ads

dimanche 17 janvier 2016

Bubble-pen lithography allows researchers to create nanodevices



 
 Researchers at the Cockrell School of Engineering at The University of Texas at Austin have developed a device and technique called bubble-pen lithography, which can handle nanoparticles, tiny pieces of gold, silicon and other materials used in nanomanufacturing, without damaging them. The method uses microbubbles to inscribe nanoparticles onto a surface.
Using microbubbles, the technique allows researchers to quickly, gently and precisely handle the tiny particles to more easily build tiny machines, biomedical sensors, optical computers, solar panels and other devices. This advanced control is key to harnessing the properties of the nanoparticles.
Using their bubble-pen device, the researchers focus a laser underneath a sheet of gold nanoislands to generate a hotspot that creates a microbubble out of vaporised water. The bubble attracts and captures a nanoparticle through a combination of gas pressure, thermal and surface tension, surface adhesion and convection. The laser then steers the microbubble to move the nanoparticle to a site on the surface. When the laser is turned off, the microbubble disappears, leaving the particle on the surface. If necessary, the researchers can expand or reduce the size of the microbubble by increasing or decreasing the laser beam's power.
"The ability to control a single nanoparticle and fix it to a substrate without damaging it could open up great opportunities for the creation of new materials and devices," assistant professor, Yuebing Zheng said. "The capability of arranging the particles will help to advance a class of materials, known as metamaterials, with properties and functions that do not exist in current natural materials."
According to Prof Zheng, bubble-pen lithography can leverage a design software program in the same way as a 3D printer, so it can deposit nanoparticles in real time in a pre-programmed pattern or design. The researchers were able to write the UT Austin Longhorn symbol and create a dome shape out of nanoparticle beads.
In comparison to other existing lithography methods, bubble-pen lithography has several advantages, Prof Zheng says. First, the technique can be used to test prototypes and ideas for devices and materials more quickly. Second, the technique has the potential for large-scale, low-cost manufacturing of nanomaterials and devices. Other lithography techniques require more resources and a clean room environment.
Prof Zheng hopes to advance bubble-pen lithography by developing a multiple-beam processing technique for industrial-level production of nanomaterials and nanodevices. He is also planning to develop a portable version of the technique that works like a mobile phone for use in prototyping.

Author
Tom Austin-Morgan

ARM based processor set to ‘catalyse’ datacentre innovation, says AMD







AMD has launched the Opteron A1100 processor, which it is targeting at datacentre applications. The 64bit device, manufactured on what the company calls an optimised 28nm process, features up to eight ARM Cortex-A57 cores, as well as twin 10Gbit Ethernet ports.
There are currently three members of the family planned – two of these will feature eight A57 cores, while the other will be a quad core variant. One of the eight core devices will run at 2GHz, whilst the other two parts are designed for use at 1.7GHz. 

Dan Bounds, AMD’s senior director of datacentre products, described the products as the ‘first enterprise class SoCs from AMD based on ARM technology’. “They will be a turning point and a catalyst for datacentre innovation,” he contended. “The devices provide a legitimate choice when it comes to optimising workloads in datacentres and, by driving new thinking, we can help the industry innovate.”
Other features of the A1100 range include a shared 4Mbyte level 2 cache, a shared 8Mbyte level 3 cache and twin 64bit DDR3/DDR4 channels, supporting data rates of up to 1866MHz with ECC. There will also be eight PCI-Express Gen 3 lanes and 14 SATA-3 ports.

Author
Graham Pitcher

Military is the New Industrial








              In my 30-plus years of engineering, I have noticed a change that has gradually crept into the design metrics of military hardware: “Cost is important!” Where the mantra once was “it must meet these requirements at all cost,” it now applies only in certain circumstances.
For several years, there’s been a push to migrate ceramic (expensive) devices to plastic industrial devices. In applications such as guided munitions, radios, military vehicles, and other non-strategic applications, industrial-grade devices are now commonplace. In general, the concept is excellent, since many benefits derive from this migration. The major advantage, of course, is cost.


           Plastic industrial devices are less expensive than ceramic 38510- or 883-grade standard military components. In many applications, hermetic integrity is not a requirement—no more than a commercial device would be in a consumer product. Also, the standard temperature range for industrial devices covers between –40 to +85°C, which is adequate in many military applications.
However, one thing that can jeopardize this philosophy has nothing to do with device performance. Rather, it is procurement. It surrounds the problem of obsolescence, which for military applications, where incremental orders are placed over a period of 20 years, can be a grave problem for the supplier. Once a weapon system is certified by the U.S. Department of Defense (DoD), any changes may require recertification, and that can be extremely expensive. It’s interesting to note that industrial applications have the same issue, especially medical applications with hardware certified by the U.S. Food and Drug Administration (FDA) or other governing body.

       To fix this issue, you either need to use recently released devices in your design, or get some guarantee from the chip supplier that the device will be around long enough for you to retire before having to redesign your system. I favor the latter, since I only want to design something once… I’m funny that way. The good news is that some programs in the industry can provide help.
One program is the automotive Q100 rating for devices. Automotive devices typically will have better specifications and some guarantee that the supply will be available for at least seven years. They do come at a premium, but typically it’s a slight increase in cost for the benefit of a known life cycle.

           Another program, Texas Instruments’ Enhanced Products (EP) portfolio, has similar advantages to the Q100 program. However, it includes enhancements for obsolescence mitigation, which extends the lifespan of the products. This can really help prevent the redesign of systems that will be in service over extremely long life cycles.
So if you want your next military (or industrial) design to stay in production for many years, search out Q100 or EP devices. Then you can look forward to your retirement without getting a call back to redesign your equipment! Till next time…




by : Richard F. Zarr

Fanny Inventions with Images


Foot Powered Bike



Pizza Scissors



Mix Sticks



Water Gun Umbrella



Din-Ink Pen Cap Eating Utensils



Corner Frames



Baby Shower Cap



Piano Doorbell




Full Body Umbrella


Shower Mic



Forget-me-not Kid Mittens




LED Slippers


5 news inventions




The quantum source of space-time





Warner Bros. Entertainment/Paramount Pictures

Black holes such as the one depicted in Interstellar (2014) can be connected by wormholes, which might have quantum origins.
In early 2009, determined to make the most of his first sabbatical from teaching, Mark Van Raamsdonk decided to tackle one of the deepest mysteries in physics: the relationship between quantum mechanics and gravity. After a year of work and consultation with colleagues, he submitted a paper on the topic to the Journal of High Energy Physics.
In April 2010, the journal sent him a rejection — with a referee’s report implying that Van Raamsdonk, a physicist at the University of British Columbia in Vancouver, was a crackpot.
His next submission, to General Relativity and Gravitation, fared little better: the referee’s report was scathing, and the journal’s editor asked for a complete rewrite.
Quantum‘spookiness’passes toughest test yet
But by then, Van Raamsdonk had entered a shorter version of the paper into a prestigious annual essay contest run by the Gravity Research Foundation in Wellesley, Massachusetts. Not only did he win first prize, but he also got to savour a particularly satisfying irony: the honour included guaranteed publication in General Relativity and Gravitation. The journal published the shorter essay in June 2010.
Still, the editors had good reason to be cautious. A successful unification of quantum mechanics and gravity has eluded physicists for nearly a century. Quantum mechanics governs the world of the small — the weird realm in which an atom or particle can be in many places at the same time, and can simultaneously spin both clockwise and anticlockwise. Gravity governs the Universe at large — from the fall of an apple to the motion of planets, stars and galaxies — and is described by Albert Einstein’s general theory of relativity, announced 100 years ago this month. The theory holds that gravity is geometry: particles are deflected when they pass near a massive object not because they feel a force, said Einstein, but because space and time around the object are curved.
Both theories have been abundantly verified through experiment, yet the realities they describe seem utterly incompatible. And from the editors’ standpoint, Van Raamsdonk’s approach to resolving this incompatibility was  strange. All that’s needed, he asserted, is ‘entanglement’: the phenomenon that many physicists believe to be the ultimate in quantum weirdness. Entanglement lets the measurement of one particle instantaneously determine the state of a partner particle, no matter how far away it may be — even on the other side of the Milky Way.
Einstein loathed the idea of entanglement, and famously derided it as “spooky action at a distance”. But it is central to quantum theory. And Van Raamsdonk, drawing on work by like-minded physicists going back more than a decade, argued for the ultimate irony — that, despite Einstein’s objections, entanglement might be the basis of geometry, and thus of Einstein’s geometric theory of gravity. “Space-time,” he says, “is just a geometrical picture of how stuff in the quantum system is entangled.”
“I had understood something that no one had understood before.”
This idea is a long way from being proved, and is hardly a complete theory of quantum gravity. But independent studies have reached much the same conclusion, drawing intense interest from major theorists. A small industry of physicists is now working to expand the geometry–entanglement relationship, using all the modern tools developed for quantum computing and quantum information theory.

Einstein was no lone genius
“I would not hesitate for a minute,” says physicist Bartłomiej Czech of Stanford University in California, “to call the connections between quantum theory and gravity that have emerged in the last ten years revolutionary.”

Gravity without gravity

Much of this work rests on a discovery2 announced in 1997 by physicist Juan Maldacena, now at the Institute for Advanced Study in Princeton, New Jersey. Maldacena’s research had led him to consider the relationship between two seemingly different model universes. One is a cosmos similar to our own. Although it neither expands nor contracts, it has three dimensions, is filled with quantum particles and obeys Einstein’s equations of gravity. Known as anti-de Sitter space (AdS), it is commonly referred to as the bulk. The other model is also filled with elementary particles, but it has one dimension fewer and doesn’t recognize gravity. Commonly known as the boundary, it is a mathematically defined membrane that lies an infinite distance from any given point in the bulk, yet completely encloses it, much like the 2D surface of a balloon enclosing a 3D volume of air. The boundary particles obey the equations of a quantum system known as conformal field theory (CFT).
Maldacena discovered that the boundary and the bulk are completely equivalent. Like the 2D circuitry of a computer chip that encodes the 3D imagery of a computer game, the relatively simple, gravity-free equations that prevail on the boundary contain the same information and describe the same physics as the more complex equations that rule the bulk.
“It’s kind of a miraculous thing,” says Van Raamsdonk. Suddenly, he says, Maldacena’s duality gave physicists a way to think about quantum gravity in the bulk without thinking about gravity at all: they just had to look at the equivalent quantum state on the boundary. And in the years since, so many have rushed to explore this idea that Maldacena’s paper is now one of the most highly cited articles in physics.

Quantum weirdness:What's really real?
Among the enthusiasts was Van Raamsdonk, who started his sabbatical by pondering one of the central unsolved questions posed by Maldacena’s discovery: exactly how does a quantum field on the boundary produce gravity in the bulk? There had already been hints that the answer might involve some sort of relation between geometry and entanglement. But it was unclear how significant these hints were: all the earlier work on this idea had dealt with special cases, such as a bulk universe that contained a black hole. So Van Raamsdonk decided to settle the matter, and work out whether the relationship was true in general, or was just a mathematical oddity.
He first considered an empty bulk universe, which corresponded to a single quantum field on the boundary. This field, and the quantum relationships that tied various parts of it together, contained the only entanglement in the system. But now, Van Raamsdonk wondered, what would happen to the bulk universe if that boundary entanglement were removed?
He was able to answer that question using mathematical tools introduced in 2006 by Shinsei Ryu, now at the University of Illinois at Urbana–Champaign, and Tadashi Takanagi, now at the Yukawa Institute for Theoretical Physics at Kyoto University in Japan. Their equations allowed him to model a slow and methodical reduction in the boundary field’s entanglement, and to watch the response in the bulk, where he saw space-time steadily elongating and pulling apart (see ‘The entanglement connection’). Ultimately, he found, reducing the entanglement to zero would break the space-time into disjointed chunks, like chewing gum stretched too far.

NIK SPENCER/NATURE
The geometry–entanglement relationship was general, Van Raamsdonk realized. Entanglement is the essential ingredient that knits space-time together into a smooth whole — not just in exotic cases with black holes, but always.
“I felt that I had understood something about a fundamental question that perhaps nobody had understood before,” he recalls: “Essentially, what is space-time?”

Entanglement and Einstein


The origins of space and time
Quantum entanglement as geometric glue — this was the essence of Van Raamsdonk’s rejected paper and winning essay, and an idea that has increasingly resonated among physicists. No one has yet found a rigorous proof, so the idea still ranks as a conjecture. But many independent lines of reasoning support it.
In 2013, for example, Maldacena and Leonard Susskind of Stanford published a related conjecture that they dubbed ER = EPR, in honour of two landmark papers from 1935. ER, by Einstein and American-Israeli physicist Nathan Rosen, introduced what is now called a wormhole: a tunnel through space-time connecting two black holes. (No real particle could actually travel through such a wormhole, science-fiction films notwithstanding: that would require moving faster than light, which is impossible.) EPR, by Einstein, Rosen and American physicist Boris Podolsky, was the first paper to clearly articulate what is now called entanglement.
Maldacena and Susskind’s conjecture was that these two concepts are related by more than a common publication date. If any two particles are connected by entanglement, the physicists suggested, then they are effectively joined by a wormhole. And vice versa: the connection that physicists call a wormhole is equivalent to entanglement. They are different ways of describing the same underlying reality.
No one has a clear idea of what this under­lying reality is. But physicists are increasingly convinced that it must exist. Maldacena, Susskind and others have been testing the ER = EPR hypothesis to see if it is mathematically consistent with everything else that is known about entanglement and wormholes — and so far, the answer is yes.

Hidden connections


Theoretical physics: Complexity on the horizon
Other lines of support for the geometry–entanglement relationship have come from condensed-matter physics and quantum information theory: fields in which entanglement already plays a central part. This has allowed researchers from these disciplines to attack quantum gravity with a whole array of fresh concepts and mathematical tools.
Tensor networks, for example, are a technique developed by condensed-matter physicists to track the quantum states of huge numbers of subatomic particles. Brian Swingle was using them in this way in 2007, when he was a graduate student at the Massachusetts Institute of Technology (MIT) in Cambridge, calculating how groups of electrons interact in a solid mat­erial. He found that the most useful network for this purpose started by linking adjacent pairs of electrons, which are most likely to interact with each other, then linking larger and larger groups in a pattern that resembled the hierarchy of a family tree. But then, during a course in quantum field theory, Swingle learned about Maldacena’s bulk–boundary correspondence and noticed an intriguing pattern: the mapping between the bulk and the boundary showed exactly the same tree-like network.
“You can think of space as being built from entanglement.”
Swingle wondered whether this resemblance might be more than just coincidence. And in 2012, he published calculations showing that it was: he had independently reached much the same conclusion as Van Raamsdonk, thereby adding strong support to the geometry–entanglement idea. “You can think of space as being built from entanglement in this very precise way using the tensors,” says Swingle, who is now at Stanford and has seen tensor networks become a frequently used tool to explore the geometry–entanglement correspondence.
Another prime example of cross-fertilization is the theory of quantum error-correcting codes, which physicists invented to aid the construction of quantum computers. These machines encode information not in bits but in ‘qubits’: quantum states, such as the up or down spin of an electron, that can take on values of 1 and 0 simultaneously. In principle, when the qubits interact and become entangled in the right way, such a device could perform calculations that an ordinary computer could not finish in the lifetime of the Universe. But in practice, the process can be incredibly fragile: the slightest disturbance from the outside world will disrupt the qubits’ delicate entanglement and destroy any possibility of quantum computation.
That need inspired quantum error-correcting codes, numerical strategies that repair corrupted correlations between the qubits and make the computation more robust. One hallmark of these codes is that they are always ‘non-local’: the information needed to restore any given qubit has to be spread out over a wide region of space. Otherwise, damage in a single spot could destroy any hope of recovery. And that non-locality, in turn, accounts for the fascination that many quantum information theorists feel when they first encounter Maldacena’s bulk–boundary correspondence: it shows a very similar kind of non-locality. The information that corresponds to a small region of the bulk is spread over a vast region of the boundary.

Nature special: General relativity at 100
“Anyone could look at AdS–CFT and say that it’s sort of vaguely analogous to a quantum error-correcting code,” says Scott Aaronson, a computer scientist at MIT. But in work published in June9, physicists led by Daniel Harlow at Harvard University in Cambridge and John Preskill of the California Institute of Technology in Pasadena argue for something stronger: that the Maldacena duality is itself a quantum error-correcting code. They have demonstrated that this is mathematically correct in a simple model, and are now trying to show that the assertion holds more generally.
“People have been saying for years that entanglement is somehow important for the emergence of the bulk,” says Harlow. “But for the first time, I think we are really getting a glimpse of how and why.”

Beyond entanglement

That prospect seems to be enticing for the Simons Foundation, a philanthropic organization in New York City that announced in August that it would provide US$2.5 million per year for at least 4 years to help researchers to move forward on the gravity–quantum information connection. “Information theory provides a powerful way to structure our thinking about fundamental physics,” says Patrick Hayden, the Stanford physicist who is directing the programme. He adds that the Simons sponsorship will support 16 main researchers at 14 institutions worldwide, along with students, postdocs and a series of workshops and schools. Ultimately, one major goal is to build up a comprehensive dictionary for translating geometric concepts into quantum language, and vice versa. This will hopefully help physicists to find their way to the complete theory of quantum gravity.
Still, researchers face several challenges. One is that the bulk–boundary correspondence does not apply in our Universe, which is neither static nor bounded; it is expanding and apparently infinite. Most researchers in the field do think that calculations using Maldacena’s correspondence are telling them something true about the real Universe, but there is little agreement as yet on exactly how to translate results from one regime to the other.
Another challenge is that the standard definition of entanglement refers to particles only at a given moment. A complete theory of quantum gravity will have to add time to that picture. “Entanglement is a big piece of the story, but it’s not the whole story,” says Susskind.
He thinks physicists may have to embrace another concept from quantum information theory: computational complexity, the number of logical steps, or operations, needed to construct the quantum state of a system. A system with low complexity is analogous to a quantum computer with almost all the qubits on zero: it is easy to define and to build. One with high complexity is analogous to a set of qubits encoding a number that would take aeons to compute.
Susskind’s road to computational complexity began about a decade ago, when he noticed that a solution to Einstein’s equations of general relativity allowed a wormhole in AdS space to get longer and longer as time went on. What did that correspond to on the boundary, he wondered? What was changing there? Susskind knew that it couldn’t be entanglement, because the correlations that produce entanglement between different particles on the boundary reach their maximum in less than a second. In an article last year, however, he and Douglas Stanford, now at the Institute for Advanced Study, showed that as time progressed, the quantum state on the boundary would vary in exactly the way expected from computational complexity.

Quantum quest: Reinventing quantum theory
“It appears more and more that the growth of the interior of a black hole is exactly the growth of computational complexity,” says Susskind. If quantum entanglement knits together pieces of space, he says, then computational complexity may drive the growth of space — and thus bring in the elusive element of time. One potential consequence, which he is just beginning to explore, could be a link between the growth of computational complexity and the expansion of the Universe. Another is that, because the insides of black holes are the very regions where quantum gravity is thought to dominate, computational complexity may have a key role in a complete theory of quantum gravity.
Despite the remaining challenges, there is a sense among the practitioners of this field that they have begun to glimpse something real and very important. “I didn’t know what space was made of before,” says Swingle. “It wasn’t clear that question even had meaning.” But now, he says, it is becoming increasingly apparent that the question does make sense. “And the answer is something that we understand,” says Swingle. “It’s made of entanglement.

Quantum Relativity

Quantum Relativity Space, Time, and Gravity in a Quantum Universe by Mark Lawrence 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Sir Isaac Newton, 1689                                                                                                                      AlbertEinstein, about 1947




Quantum Relativity is part of the on-going story of man's attempt to understand the rules of the universe, particularly the laws of gravity.

Gravity

In 1686, Sir Isaac Newton published his great work, Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy). In this book, Newton released his theory of gravity, the first mathematical theory of gravity ever. In order to create his theory, first Newton had to invent a new form of mathematics, Calculus.
Newton was never satisfied with his theory. The idea that the Earth pulls on the Moon with no visible or mediating agent is called action at a distance. Newton never thought this idea was credible, but he was unable to find any alternative.
Newton's theory of gravity is quite good - NASA uses it almost exclusively for all orbital calculations, and it works just fine. However, very small numerical problems with his theory were found over the years. Also, Newton's theory was heavily criticised on philosophical grounds. Newton's theory presumed there were special observers, called "inertial observers," who were the only ones to see the laws of physics in their pure form.

Quantum Mechanics

In 1899, Max Planck first introduced the quantum hypothesis. Up until Planck, it was thought that anything could be divided into smaller and smaller segments without limit, but still retaining the basic characteristics of the substance. It's hard to understand this from today's viewpoint, over 100 years later, but in 1899 the idea of atoms was still controversial. Planck introduced the notion that the electro-magnetic field could only be made up of small indivisible units.
Quantum mechanics is a very strange theory, based on the observation that atomic particles often can be in one place or another, but not in between. Quantum mechanics was developed by several people, culminating in a comprehensive theory released by Werner Heisenberg in 1925 and Erwin Schroedinger in 1926. However, almost immediately it was realized that quantum mechanics was an incomplete theory. Quantum mechanics could not accurately account for electro-magnetic forces, and quantum mechanics violated the laws of special relativity.
In 1948, quantum mechanics was replaced by a new theory simultaneously developed by Richard Feynman, Sun-Itiro Tomonaga, and Julian Schwinger, called Quantum Field Theory. Quantum Field Theory remains today our best theory of electro-magnetic forces, and is our current theory for the nuclear force and the radioactive force, more often called the strong and weak forces.

Relativity

In 1905, Albert Einstein shocked the world with three papers. Before he published these papers, Einstein was a clerk in the Swiss Patent office - he had graduated from college with a bachelors (4 year) degree, but his professors considered him a rather indifferent student who was not talented enough to warrant a position in graduate school to pursue a Doctorate degree. Einstein's three papers were:
  • Brownian Motion - after this paper was published, everyone agreed that matter was made up of atoms. The atomic theory is perhaps the most fundamental part of quantum mechanics.
  • The Photo-Electric effect - in this paper, Einstein coined the work "photon," and put us firmly on the road to quantum mechanics.
  • Special Relativity - in this paper, Einstein explained that the speed of light was an absolute constant. Everyone who measures the speed of light will get the same number, regardless of how fast they are moving and how fast the light source is moving, and nothing can go faster than light. Special relativity tells us that space and time do not exist as separate entities, as Newton thought, but rather as one union, which we call space-time.
Any one of these three papers would have been enough to ensure that Einstein became known as a superb physicist. The three papers published in one summer were enough to set him aside as someone special. However, Einstein was not by any means done creating.
Einstein realized almost immediately that his theory of Special Relativity had a serious flaw: gravity could not co-exist with his new theory of space and time. So, almost immediately Einstein set out to find a new theory of gravity, a theory to replace Newton's. In 1916, 11 years later after special relativity and 230 years after Newton, Einstein published his theory of gravity, the General Theory of Relativity. In order to create this theory of gravity, Einstein had to change our notions of space and time yet again. Einstein had to postulate that we lived in a curved space-time, just as we live on the curved surface of the Earth. Einstein showed that there were no such things as Newton's inertial observers. Also, General Relativity is what is called a field theory, so Newton's spooky action at a distance was also gone.
Just as Newton was never satisfied with his theory of gravity, Einstein was never satisfied with General Relativity. Einstein was disturbed by two problems: he believed that there should be just one theory to account for both gravity and electro- magnetism, and he believed that this "unified field" theory should get rid of quantum mechanics. Although Einstein himself helped create quantum mechanics, he hated quantum mechanics until his death. One interpretation of quantum mechanics is that everything is uncertain, and everything is fundamentally governed by the laws of probability. Einstein particularly despised this notion, frequently asserting "God does not throw dice!"

Quantum Relativity

Gravity as we currently understand it cannot be reconciled with the laws of quantum mechanics. Since 1930, people have tried to invent a theory of quantum gravity. I believe Enrico Fermi was the first to propose a theory of quantum gravity, in 1931. However, Fermi's theory predicted that all forces were infinite, and therefore the universe could not exist. Most physicists think the universe does in fact exist, so it was thought that the theory of quantum gravity had some serious problems.
Shortly after quantum field theory was invented, people started trying to invent a quantum field theory of gravity. Very quickly, it was shown that this is impossible: there can be no theory of gravity which obeys the rules of quantum field theory. The quantum theory of fields simply will not work for a force with the properties of gravity. It was recognized that a completely new type of theory was required. Since this theory does not currently exist, no one is certain exactly what it looks like. However, most people presume we need a new theory of space and time which will be compatible with the laws of quantum mechanics as we know them, and somehow allow a theory of quantum gravity to exist. This new theory of space and time is often called Quantum Relativity.
This web site is all about these theories.